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Definition 1. The category, Cont, of containers has

Objects An object in Cont is a (dependent) pair (S, P ), written S . P , where S is a set and
P =

∑
s∈S P (s) is an S-indexed family of sets. S . P is called a container ; each element

s ∈ S is called a shape and P (s) the positions for that shape.

Morphisms A morphism from S . P to T . Q is given by a pair (f, r), written f . r, where
f : S → T is a function on shapes and r :

∏
s∈S (Q(f(s))→ P (s)) is an S-indexed family

of functions assigning source positions to target positions.

Identities The identity on S . P is idS .
∏

s∈S idP (s).

Composition The composite of (f ′ .r′) : (S′ .P ′)→ (S′′ .P ′′) after (f .r) : (S .P )→ (S′ .P ′)
is (f ′ ◦ f) .

∏
s∈S r(s) ◦ r′(f(s)).

Proposition 1. Cont is a category.

Proof.

Identities The identities defined above exist, since idS : S → S and idP (s) : P (idS(s))→ P (s).

Let (f . r) : (S . P ) → (T . Q). Then (f . r) ◦ (idS .
∏

s∈S idP (s)) = (f ◦ idS) .∏
s∈S idP (idS(s)) ◦ r(s) = f .

∏
s∈S r(s) = f . r.

Now let (f . r) : (T . Q) → (S . P ). Then (idS .
∏

s∈S idP (s)) ◦ (f . r) = (idS ◦ f) .∏
s∈S r(s) ◦ idP (f(s)) = f .

∏
s∈S r(s) = f . r.

Composites The composites defined above exist: taking f . r and f ′ . r′ as in the definition,
we have f : S → S′ and f ′ : S′ → S′′, hence f ′ ◦ f : S → S′′, and if s ∈ S then
r(s) : P ′(f(s)) → P (s), and f(s) ∈ S′ so r′(f(s)) : P ′′(f ′(f(s))) → P ′(f(s)), and hence
r(s) ◦ r′(f(s)) : P ′′((f ′ ◦ f)(s))→ P (s).

Associativity Let (f . r) : (S . P )→ (S′ . P ′), (f ′ . r′) : (S′ . P ′)→ (S′′ . P ′′), and (f ′′ . r′′) :
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(S′′ . P ′′)→ (S′′′ . P ′′′). Then

((f ′′ . r′′) ◦ (f ′ . r′)) ◦ (f . r)

=

(
(f ′′ ◦ f ′) .

∏
s′∈S′

r′(s′) ◦ r′′(f ′(s′))

)
◦ (f . r)

= ((f ′′ ◦ f ′) ◦ f) .
∏
s∈S

r(s) ◦ (r′(f(s)) ◦ r′′(f ′(f(s))))

= (f ′′ ◦ (f ′ ◦ f)) .
∏
s∈S

(r(s) ◦ r′(f(s))) ◦ r′′(f ′(f(s)))

= (f ′′ . r′′) ◦

(
(f ′ ◦ f) .

∏
s∈S

r(s) ◦ r′(f(s))

)
= (f ′′ . r′′) ◦ ((f ′ . r′) ◦ (f . r))

Proposition 2. Cont is cartesian.

Proof. Terminal object The container 1 .
∑
∗∈1 0 is terminal in Cont, where 1 = {∗} is

terminal and 0 = ∅ is initial in Set. Given any container S . P , a morphism to 1 .
∑
∗∈1 0

is given by S ! .
∏

s∈S !P (s). TODO: type check, uniqueness

Binary products Let S . P and T . Q be containers. Their product is given by S × T .∑
(s,t)∈S×T P (s) + Q(t) with projections π1 .

∏
(s,t) ι1 and π2 .

∏
(s,t) ι2. TODO: type

check, universal property

Proposition 3. Cont is cocartesian.

Proof. Initial object 0 . 0 is initial in Cont. TODO: check

Binary coproducts Let S.P and T .Q be containers. Their coproduct is given by S+T .P+Q
with injections ι1.

∏
s∈S idP (s) and ι2.

∏
t∈T idQ(t). TODO: type check, universal property

Definition 2. The extension of a container S . P is an endofunctor [S . P ] on Set given by

On objects For X ∈ Set, [S . P ] (X) =
∑

s∈S(P (s)⇒ X) is the S-indexed family of functions
from positions to X.

On morphisms For f : X → Y , [S . P ] (f) = λ(s ∈ S, g ∈ (P (s) ⇒ X)). (s, f ◦ g) is post-
composition by f to get from positions to X then to Y .

Proposition 4. The extension of a container is a functor.

Proof.
[S . P ] (idX) = λ(s, g). (s, idX ◦ g) = λ(s, g). (s, g) = id∑

s∈S(P (s)⇒X)

and

[S . P ] (f◦f ′) = λ(s, g). (s, f◦f ′◦g) = λ(s, g′). (s, f◦g′)◦λ(s, g). (s, f ′◦g) = [S . P ] (f)◦[S . P ] (f ′)
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Definition 3. The extension of a morphism f . r : (S . P → T . Q) in Cont is a natural
transformation [f . r] between extensions given by

[f . r]X = λ(s ∈ S, g ∈ (P (s)⇒ X)). (f(s), g ◦ r(s))

Proposition 5. Extensions of morphisms are natural transformations.

Proof. Let f . r : (S . P → T . Q) be a morphism in Cont. Let h : X → Y be a morphism in
Set. We must show that the following naturality condition holds.

[S . P ] (X) [S . P ] (Y )

[T . Q] (X) [T . Q] (Y )

[S.P ](h) //

[f.r]X

��

[T.Q](h)
//

[f.r]Y

��

Let (s, g) ∈ [S . P ] (X) (so s ∈ S and g : P (s)→ X). Then

[T . Q] (h)([f . r]X (s, g))

= [T . Q] (h)(f(s), g ◦ r(s))
= (f(s), h ◦ g ◦ r(s))
= [f . r]Y (s, h ◦ g)

= [f . r]Y ([S . P ] (h)(s, g))

Proposition 6. The taking of extensions, [ ], is a functor (from Cont to (Set⇒ Set)).

Proof. Let S . P be a container and X a set. Then

[idS.P ]X =

[
idS .

∏
s∈S

idP (s)

]
X

= λ(s, g). (idS(s), g ◦ idP (s)) = λ(s, g). (s, g) = idX

Now let f . r and f ′ . r′ be as in Definition 1. Then

[(f ′ . r′) ◦ (f . r)]X

=

[
(f ′ ◦ f) .

∏
s∈S

r(s) ◦ r′(f(s))

]
X

= λ(s, g). ((f ′ ◦ f)(s), g ◦ (r(s) ◦ r′(f(s))))

= λ(s, g). (f ′(f(s)), g ◦ r(s) ◦ r′(f(s)))

= (λ(s′, g′). (f ′(s′), g′ ◦ r′(s′))) ◦ (λ(s, g). (f(s), g ◦ r(s)))
= [f ′ . r′]X ◦ [f . r]X

Proposition 7. Every natural transformation between extensions of containers is the extension
of a unique morphism in Cont.
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Proof. TODO: the proof

Proposition 8. The functor [ ] is full and faithful.

Proof. TODO: the proof

Proposition 9. Cont is a full subcategory of Set⇒ Set.

Proof. TODO: the proof

Proposition 10. The functor [ ] preserves products.

Proof. TODO: the proof

Proposition 11. The functor [ ] preserves coproducts.

Proof. TODO: the proof

Proposition 12. The functor [ ] preserves pullbacks.

Proof. TODO: the proof
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