Containers

Ramana Kumar

March 21, 2011

Definition 1. The category, **Cont**, of containers has

Objects An object in **Cont** is a (dependent) pair (S, P), written $S \triangleright P$, where S is a set and $P = \sum_{s \in S} P(s)$ is an S-indexed family of sets. $S \triangleright P$ is called a *container*; each element $s \in S$ is called a *shape* and P(s) the *positions* for that shape.

Morphisms A morphism from $S \triangleright P$ to $T \triangleright Q$ is given by a pair (f, r), written $f \triangleright r$, where $f: S \to T$ is a function on shapes and $r: \prod_{s \in S} (Q(f(s)) \to P(s))$ is an S-indexed family of functions assigning source positions to target positions.

Identities The identity on $S \triangleright P$ is $id_S \triangleright \prod_{s \in S} id_{P(s)}$.

Composition The composite of $(f' \triangleright r') : (S' \triangleright P') \to (S'' \triangleright P'')$ after $(f \triangleright r) : (S \triangleright P) \to (S' \triangleright P')$ is $(f' \circ f) \triangleright \prod_{s \in S} r(s) \circ r'(f(s))$.

Proposition 1. Cont is a category.

Proof.

Identities The identities defined above exist, since $id_S : S \to S$ and $id_{P(s)} : P(id_S(s)) \to P(s)$.

Let $(f \triangleright r) : (S \triangleright P) \to (T \triangleright Q)$. Then $(f \triangleright r) \circ (\mathrm{id}_S \triangleright \prod_{s \in S} \mathrm{id}_{P(s)}) = (f \circ \mathrm{id}_S) \triangleright \prod_{s \in S} \mathrm{id}_{P(\mathrm{id}_S(s))} \circ r(s) = f \triangleright \prod_{s \in S} r(s) = f \triangleright r$.

Now let $(f \triangleright r) : (T \triangleright Q) \to (S \triangleright P)$. Then $(\mathrm{id}_S \triangleright \prod_{s \in S} \mathrm{id}_{P(s)}) \circ (f \triangleright r) = (\mathrm{id}_S \circ f) \triangleright \prod_{s \in S} r(s) \circ \mathrm{id}_{P(f(s))} = f \triangleright \prod_{s \in S} r(s) = f \triangleright r$.

Composites The composites defined above exist: taking $f \triangleright r$ and $f' \triangleright r'$ as in the definition, we have $f: S \to S'$ and $f': S' \to S''$, hence $f' \circ f: S \to S''$, and if $s \in S$ then $r(s): P'(f(s)) \to P(s)$, and $f(s) \in S'$ so $r'(f(s)): P''(f'(f(s))) \to P'(f(s))$, and hence $r(s) \circ r'(f(s)): P''((f' \circ f)(s)) \to P(s)$.

Associativity Let $(f \triangleright r) : (S \triangleright P) \to (S' \triangleright P'), (f' \triangleright r') : (S' \triangleright P') \to (S'' \triangleright P''), and <math>(f'' \triangleright r'') : (S' \triangleright P') \to (S'' \triangleright P'')$

$$(S'' \triangleright P'') \rightarrow (S''' \triangleright P'''). \text{ Then }$$

$$((f'' \triangleright r'') \circ (f' \triangleright r')) \circ (f \triangleright r)$$

$$= \left((f'' \circ f') \triangleright \prod_{s' \in S'} r'(s') \circ r''(f'(s')) \right) \circ (f \triangleright r)$$

$$= ((f'' \circ f') \circ f) \triangleright \prod_{s \in S} r(s) \circ (r'(f(s)) \circ r''(f'(f(s))))$$

$$= (f'' \circ (f' \circ f)) \triangleright \prod_{s \in S} (r(s) \circ r'(f(s))) \circ r''(f'(f(s)))$$

$$= (f'' \triangleright r'') \circ \left((f' \circ f) \triangleright \prod_{s \in S} r(s) \circ r'(f(s)) \right)$$

$$= (f'' \triangleright r'') \circ ((f' \triangleright r') \circ (f \triangleright r))$$

Proposition 2. Cont is cartesian.

Proof. **Terminal object** The container $\mathbf{1} \triangleright \sum_{* \in \mathbf{1}} \mathbf{0}$ is terminal in **Cont**, where $\mathbf{1} = \{*\}$ is terminal and $\mathbf{0} = \emptyset$ is initial in **Set**. Given any container $S \triangleright P$, a morphism to $\mathbf{1} \triangleright \sum_{* \in \mathbf{1}} \mathbf{0}$ is given by $S! \triangleright \prod_{s \in S} P_{(s)}$. **TODO:** type check, uniqueness

Binary products Let $S \triangleright P$ and $T \triangleright Q$ be containers. Their product is given by $S \times T \triangleright \sum_{(s,t) \in S \times T} P(s) + Q(t)$ with projections $\pi_1 \triangleright \prod_{(s,t)} \iota_1$ and $\pi_2 \triangleright \prod_{(s,t)} \iota_2$. **TODO:** type check, universal property

Proposition 3. Cont is cocartesian.

Proof. Initial object $0 \triangleright 0$ is initial in Cont. TODO: check

Binary coproducts Let $S \triangleright P$ and $T \triangleright Q$ be containers. Their coproduct is given by $S+T \triangleright P+Q$ with injections $\iota_1 \triangleright \prod_{s \in S} \operatorname{id}_{P(s)}$ and $\iota_2 \triangleright \prod_{t \in T} \operatorname{id}_{Q(t)}$. **TODO:** type check, universal property

Definition 2. The *extension* of a container $S \triangleright P$ is an endofunctor $[S \triangleright P]$ on **Set** given by

On objects For $X \in \mathbf{Set}$, $[S \triangleright P](X) = \sum_{s \in S} (P(s) \Rightarrow X)$ is the S-indexed family of functions from positions to X.

On morphisms For $f: X \to Y$, $[S \triangleright P](f) = \lambda(s \in S, g \in (P(s) \Rightarrow X)).(s, f \circ g)$ is post-composition by f to get from positions to X then to Y.

Proposition 4. The extension of a container is a functor.

Proof.

$$[S \triangleright P]$$
 $(\mathrm{id}_X) = \lambda(s,g).$ $(s,\mathrm{id}_X \circ g) = \lambda(s,g).$ $(s,g) = \mathrm{id}_{\sum_{s \in S}(P(s) \Rightarrow X)}$

and

$$[S \rhd P] \ (f \circ f') = \lambda(s,g). \ (s,f \circ f' \circ g) = \lambda(s,g'). \ (s,f \circ g') \circ \lambda(s,g). \ (s,f' \circ g) = [S \rhd P] \ (f) \circ [S \rhd P] \ (f')$$

Definition 3. The *extension* of a morphism $f \triangleright r : (S \triangleright P \rightarrow T \triangleright Q)$ in **Cont** is a natural transformation $[f \triangleright r]$ between extensions given by

$$[f \triangleright r]_X = \lambda(s \in S, g \in (P(s) \Rightarrow X)). (f(s), g \circ r(s))$$

Proposition 5. Extensions of morphisms are natural transformations.

Proof. Let $f \triangleright r : (S \triangleright P \to T \triangleright Q)$ be a morphism in **Cont**. Let $h : X \to Y$ be a morphism in **Set**. We must show that the following naturality condition holds.

$$[S \triangleright P] (X) \xrightarrow{[S \triangleright P](h)} [S \triangleright P] (Y)$$

$$\downarrow [f \triangleright r]_X \qquad \qquad \downarrow [f \triangleright r]_Y$$

$$[T \triangleright Q] (X) \xrightarrow{[T \triangleright Q](h)} [T \triangleright Q] (Y)$$

Let $(s,g) \in [S \triangleright P](X)$ (so $s \in S$ and $g: P(s) \to X$). Then

$$\begin{split} &[T\rhd Q]\left(h\right)([f\rhd r]_X\left(s,g\right))\\ &=[T\rhd Q]\left(h\right)(f(s),g\circ r(s))\\ &=(f(s),h\circ g\circ r(s))\\ &=[f\rhd r]_Y\left(s,h\circ g\right)\\ &=[f\rhd r]_Y\left([S\rhd P]\left(h\right)(s,g)\right) \end{split}$$

Proposition 6. The taking of extensions, [-], is a functor (from Cont to (Set \Rightarrow Set)).

Proof. Let $S \triangleright P$ be a container and X a set. Then

$$[\mathrm{id}_{S\triangleright P}]_X = \left[\mathrm{id}_S \triangleright \prod_{s\in S} \mathrm{id}_{P(s)}\right]_Y = \lambda(s,g).\,(\mathrm{id}_S(s),g\circ\mathrm{id}_{P(s)}) = \lambda(s,g).\,(s,g) = \mathrm{id}_X$$

Now let $f \triangleright r$ and $f' \triangleright r'$ be as in Definition 1. Then

$$\begin{split} &[(f' \rhd r') \circ (f \rhd r)]_X \\ &= \left[(f' \circ f) \rhd \prod_{s \in S} r(s) \circ r'(f(s)) \right]_X \\ &= \lambda(s,g). \left((f' \circ f)(s), g \circ (r(s) \circ r'(f(s))) \right) \\ &= \lambda(s,g). \left(f'(f(s)), g \circ r(s) \circ r'(f(s)) \right) \\ &= (\lambda(s',g'). \left(f'(s'), g' \circ r'(s') \right) \right) \circ (\lambda(s,g). \left(f(s), g \circ r(s) \right)) \\ &= [f' \rhd r']_X \circ [f \rhd r]_X \end{split}$$

Proposition 7. Every natural transformation between extensions of containers is the extension of a unique morphism in **Cont**.

Proof. TODO: the proof	
Proposition 8. The functor [-] is full and faithful.	
Proof. TODO: the proof	
Proposition 9. Cont is a full subcategory of $\mathbf{Set} \Rightarrow \mathbf{Set}$.	
Proof. TODO: the proof	
Proposition 10. The functor [-] preserves products.	
Proof. TODO: the proof	
Proposition 11. The functor [-] preserves coproducts.	
Proof. TODO: the proof	
Proposition 12. The functor [-] preserves pullbacks.	
Proof. TODO: the proof	