
Agda Reference Manual

Various Authors

February 22, 2012

1 Lexical Matters

1.1 Source Files

Agda code is written in plain text files consisting of Unicode characters encoded in UTF-8. The
tokens that may appear in source files are literals (§1.3), names (§1.4), and keywords (§1.5).

Tokens are separated by whitespace and organised into blocks. Whitespace includes comments
(§1.2). For more details about layout, see §1.6.

Agda programs are organised into modules, with one top-level module per file. For more
details, see §5.

1.2 Comments

Agda has both single-line and multi-line comments.
A single-line comment is two hyphens (--) followed by a sequence of any characters except

newline. The comment ends with a newline.
A multi-line comment is any sequence of characters delimited by {- and -}. Multi-line

comments may be nested, and must be nested properly.
Comments may not appear in string literals. (Apparent comments in string literals are part

of the string.)

1.3 Literals

Numbers

Characters A character literal is given by

’c’

where c is any character except backslash (\) or single-quote (’). The backslash literal is written
’\\’ and the single-quote literal ’\’’.

Strings A string literal is given by

"s"

where s is a sequence of normal or escaped characters characters. A normal character, in this
context, is any Unicode character except backslash (\) or double-quote ("). Escaped characters
and their meanings are listed below.

1

Character Meaning
\\ backslash
\" double-quote
\n newline
\r carriage return
\t tab

(Unescaped newlines, carriage returns, and tabs may also occur in strings.)

1.4 Names

Name Parts A name part is a string of printable characters not containing any of the following
characters.

_;."(){}@

(Unqualified) Names A name is is a sequence of one or more name parts separated by
underscores ().

Qualified Names A qualified name is a sequence of one or more unqualified names separated
by dots (.).

1.5 Keywords

Keywords are name parts that have a special meaning and can only appear in certain contexts.
The following keywords may not appear in names (though they may appear as substrings of

name parts).

=

|

->

:

?

\

→
∀
λ
abstract

codata

constructor

data

field

forall

hiding

import

in

infix

infixl

infixr

let

module

mutual

open

postulate

primitive

Prop

private

public

quoteGoal

quoteTerm

quote

record

renaming

rewrite

Setn (n ' [0− 9]∗)
syntax

unquote

using

where

with

The following keywords may appear in names.

to

2

1.6 Layout

2 Type Theory

2.1 Core Syntax

2.2 Typing Rules

2.3 Normalisation

3 Extended Syntax

3.1 Mixfix Operators

3.2 Fixity Declarations

3.3 Implicit Arguments

3.4 Instance Arguments

4 Declarations

4.1 Data

4.2 Constants

4.3 Records

4.4 Postulates

5 Modules

6 Totality

7 Relevance

8 Practical Matters

8.1 Emacs Interface

8.2 Pragmas

8.3 Auto

8.4 Compilation

9 Standard Library

3

